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Abstract 
Eukaryotic cells organize their intracellular 
components into organelles that can be 
membrane-bound or membraneless. A large 
number of membraneless organelles, including 
nucleoli, Cajal bodies, P-bodies, and stress 
granules, exist as liquid droplets within the cell 
and arise from the condensation of cellular 
material in a process termed liquid-liquid phase 
separation (LLPS). Beyond a mere 
organizational tool, concentrating cellular 
components into membraneless organelles tunes 
biochemical reactions and improves cellular 
fitness during stress. In this review, we provide 
an overview of the molecular underpinnings of 
the formation and regulation of these 
membraneless organelles. This molecular 
understanding explains emergent properties of 
these membraneless organelles and shines new 
light on neurodegenerative diseases, which may 
originate from disturbances in LLPS and 
membraneless organelles. 
       
 
Introduction 

In The Origin of Life, Soviet biochemist 
Alexander Oparin proposed that life originated 
as coacervate drops of organic materials (1). The 
theory was grounded in the simple observation 
that droplets of organic molecules coalesce 
spontaneously from an otherwise dilute solution. 
Oparin’s coacervate idea eventually lost support 
because it failed to account for the membrane 
barriers that all cells use to separate inside from 
out and that eukaryotic cells use to further 
compartmentalize their cellular biochemistry 

inside membrane-bound organelles (1). 
However, cells also organize components into 
non-membrane bound organelles, suggesting 
that Oparin’s coacervate idea deserves a second 
look (2-4). In fact, many cellular organelles are 
condensates of protein, nucleic acid, or both. In 
the nucleus, these include nucleoli, Cajal bodies, 
nuclear speckles, paraspeckles, histone-locus 
bodies, nuclear gems, and Promyelocytic 
leukemia (PML) bodies (5-7). The cytoplasm 
also contains several membraneless organelles, 
including P-bodies, stress granules, and germ 
granules (6,8). In this review, we highlight 
advances in our understanding of the molecular 
language of these membraneless organelles with 
respect to how they form, what functions they 
serve, what rules regulate them, and how their 
dysregulation may contribute to human disease. 
 
Membraneless organelles are liquids that 
organize the cell 

Early evidence that membraneless 
organelles may behave as liquids came from 
study of the C. elegans germ granule, or P 
granule. P granules are collections of RNA and 
RNA-binding proteins (RBPs) that accumulate 
on the posterior side of the C. elegans zygote 
before the cell divides into a posterior and 
anterior cell (9,10). By fluorescently labeling a 
constitutive P-granule protein, Brangwynne, 
Hyman, and colleagues discovered that P 
granules display liquid-like properties: the 
granules are spherical, fuse with one another, 
deform under shear stress, have fast internal 
rearrangement as assessed by recovery after 
photobleaching, and drip off the surface of the 
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nucleus like a liquid (9). These observations led 
to the conclusion that P granules are liquid 
droplets inside the cell that form via a process 
called liquid-liquid phase separation (LLPS) 
(Fig. 1A). Burgeoning evidence now suggests 
that a wide range of membraneless structures—
from ribonucleoprotein (RNP) granules like the 
nucleolus to centrosomes and clusters of 
signaling molecules on membranes (Fig. 1B)—
exhibit liquid-like properties and coalesce 
through a LLPS mechanism (11-18).  
 
Phase separation and transition: liquids, gels, 
and crystals 

The example of a salad dressing 
illustrates a simplified version of LLPS (16). 
Even after a vigorous shake, the oil and water in 
the salad dressing separate into a demixed two-
phase system that has a lower free energy than 
the fully mixed state. This type of demixing is 
often called LLPS or a phase transition. Two 
types of interactions contribute to the process: 
the homotypic interactions between two 
molecules of oil or two molecules of water and 
the heterotypic interactions between a water and 
oil molecule. Entropy-driven mixing is 
disfavored due to the higher strength of the 
homotypic interactions over the heterotypic 
interactions, which leads to a phase separated 
two-state system of lower free energy (16,19). 
This simple example of phase separation extends 
more generally to solutions of polymers, for 
which the physics of LLPS has been well 
described (20-23). As polymers, proteins and 
nucleic acids are subject to the same underlying 
physics of LLPS (Fig. 1A) (19). 

The concept that proteins undergo phase 
transitions is not novel, especially not to protein 
crystallographers whose work relies on coaxing 
proteins into crystals and who often observe 
gels, aggregations, and phase separation of 
proteins as side products of the crystallization 
process. As an example, lysozyme undergoes 
LLPS, gelation, and crystallization depending on 
certain conditions of temperature, salt 
concentration, and protein concentration (24,25). 
Wang et al. have more recently demonstrated 
that oligomeric peptides undergo LLPS in vitro, 
with LLPS stimulated by low temperature, 
crowding agents such as polyethylene glycol 
(PEG), and pH close to the isoelectric point (26). 

Together, the observations that both peptides 
and well-folded globular proteins undergo liquid 
demixing in vitro indicate that many if not all 
proteins can undergo LLPS in conducive 
environmental conditions. It is not our intention 
to trivialize the finding that proteins undergo 
LLPS but rather to point out that this property 
extends to all proteins and polymers in general. 
Indeed, RNAs can also phase separate in vitro 
(27,28). The critical question then is to 
understand what makes phase separation 
biologically consequential and achievable within 
the cellular environment, which we address in 
the next two sections.  
 
Biological consequences of phase separation  

Life has harnessed the ability of proteins 
and other biopolymers to phase separate into 
liquids and in some cases, further transition to 
gels and solids. We highlight some of the 
emergent biological properties of phase-
separated compartments below. 
 
Organization 

First, LLPS serves as a dynamic 
organizing principle that enables cells to 
spatiotemporally compartmentalize specific 
biochemistry, provide specific infrastructure, or 
both (29). LLPS enables compartmentalization 
within a boundary while still allowing for both 
internal rearrangement and diffusion of 
biomolecules into and out of the compartment 
(29). For example, neurons have postsynaptic 
densities (PSDs), which are protein-rich 
compartments on the intracellular side of the 
postsynaptic plasma membrane that undergo 
remodeling in protein composition in response 
to long-term potentiation, i.e. the persistent 
strengthening of synapses due to recent patterns 
of activity, which underlies learning and 
memory (30,31). Zheng et al. propose a phase-
separation model for the formation and 
remodeling of PSDs with supporting evidence 
that two major protein components of the PSD, 
SynGAP and PSD-95, can form liquid droplets 
in vitro (30). Because neurons have large surface 
areas, and consequently a large space for protein 
diffusion, spatially confining molecules involved 
in the same biochemical pathways poses a 
challenge. The formation of a PSD through a 
phase-separation mechanism allows neurons to 
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locally concentrate protein without having to 
globally upregulate protein synthesis. 

In a similar vein, neuronal mRNP-
granule assembly mediated by LLPS of low-
complexity domains of ataxin 2 is critical for 
long-term memory formation in Drosophila 
(32,33). This mRNP-granule-driven mechanism 
of long-term plasticity differs from how another 
RBP, CPEB/Orb2, underlies long-term 
potentiation. CPEB/Orb2 forms self-templating 
amyloid or prion conformers that directly 
stimulate synaptic mRNA translation (34-36). 
Thus, different RBPs may function via distinct 
assembly mechanisms and different material 
phases to encode long-term memories. 

Neurons also utilize LLPS for functional 
purposes in the tight but dynamic clustering of 
neurotransmitter-laden synaptic vesicles (SVs) 
at synapses (37). These clusters serve as a 
replenishable pool of SVs, which can be rapidly 
mobilized for exocytosis during periods of 
heightened synaptic activity. It had remained 
unclear how SVs could remain motile while 
being confined in these clusters. It is now 
suggested that the physiological mediator of SV 
clustering, synapsin, forms a liquid phase that 
connects and recruits SVs in these clusters (37). 
This phase can be rapidly dispersed via synapsin 
phosphorylation by calcium/calmodulin-
dependent protein kinase II (CaMKII) (37), 
which would emancipate SVs en masse for rapid 
bursts of exocytosis upon synaptic stimulation. 

Phase separation is also implicated in 
transcription, both at the level of transcriptional 
activation and repression. In Drosophila 
polytene cells, for instance, the application of 
stresses like heat shock induces formation of 
transcription puffs at the sites of heat-shock 
protein (Hsp) genes where active transcription 
occurs (38-40). Studies on the recruitment of 
proteins, such as RNA polymerase II and 
topoisomerase, to these sites led Zobeck et al. to 
originally propose a model in which a porous 
transcription compartment forms at Hsp gene 
loci (40). In retrospect, these data support a 
phase-separation model for transcriptional 
control (41). A phase-separation model has also 
been proposed for the clustering of enhancer 
elements in DNA together with coactivator 
proteins to form super enhancers (42-45). 
Moreover, prion-like domains (PrLDs) of 

transcription factors can cluster into dynamic 
hubs that stabilize DNA binding and recruit 
chromatin-remodeling factors and RNA 
polymerase II (46-49). These hubs can manifest 
as phase-separated structures at elevated 
transcription-factor expression levels (46-49). 
LLPS also functions in transcriptional 
repression. For example, heterochromatin-
mediated gene silencing is driven via 
compartmentalization of condensed chromatin 
into phase-separated liquid droplets formed by 
heterochromatin protein 1a (50,51). The 
involvement of phase separation in regulating 
genome architecture and transcriptional output 
provides an exciting new avenue of research. 

Finally, it is important to note that not 
all membraneless organelles are fully liquids; 
many likely exist along a continuum from more 
liquid-like to more gel-like, depending on the 
interaction strength of the constituents (29). On 
the gel side of the spectrum is an additional 
example of an organizational role for phase 
separation: the nuclear-pore complex (NPC). 
The central channel of the NPC is a gel-like, 
phase-separated structure that organizes the cell 
by acting as barrier to diffusion of molecules 
above 30-40 kDa into or out of the nucleus (52-
54). Similar selective-permeability barriers also 
form at the base of primary cilia (55,56). Thus, 
depending on the structural, functional, or 
organizational need, the cell employs phase 
separation that spans from more dynamic, 
liquid-like compartments to more static, gel-like 
compartments. For example, globular S-
crystallin proteins of different sizes assemble 
into a gel of varying density, thereby 
establishing a refractive-index gradient that 
forms the parabolic lens of the squid eye (57). 
At the extreme end of the spectrum, stable solid 
phases comprised of amyloid or prion 
conformers are utilized as with CPEB/Orb2 
prions in long-term potentiation (35,36), Xvelo 
amyloids in Balbiani bodies that specify 
germline identity (58), or transient Rim4 
amyloids in meiotic control (59-61). 
 
Tuning reactions 

Membraneless organelles likely tune 
and accelerate biochemical reactions in vivo in a 
manner akin to how various synthetic chemical 
reactions can be accelerated in microdroplets in 
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vitro (62). The specific microenvironment 
within the liquid phase may serve to tune 
reaction rates and biochemical activities inside 
membraneless organelles. Phase separation can 
increase the concentration of certain molecules 
within dense liquid condensates compared to the 
surrounding solution by as much as two orders 
of magnitude (13). Given the dependence of 
reaction rates on reactant concentrations, 
achieving a locally high concentration of 
molecules due to phase separation can be a 
biological mechanism for increasing reaction 
rates. This prediction has been demonstrated in 
vitro by using an aqueous two-phase system to 
concentrate RNA substrate into liquid droplets 
and measuring the rate of substrate cleavage by 
a ribozyme (63). Concentrating the RNA and 
ribozyme into dense liquid droplets increased 
the reaction rate, suggesting that coacervation 
inside a cell can have a similar effect (63). 
Nuclear RNP granules called Cajal bodies 
provide one such in vivo example. Cajal bodies 
are the sites of assembly of the U4/U6·U5 tri-
snRNP complex, which forms eleven times more 
efficiently within Cajal Bodies than in the 
surrounding nucleoplasm (64). 

Beyond increasing reaction rates, LLPS 
may also tune a biochemical process by acting 
as a filter to regulate which molecules enter a 
liquid droplet and which molecules stay out. In 
the case of Cajal bodies, only the fully formed 
U4/U6·U5 tri-snRNP complex can leave the 
nuclear body whereas the di-snRNP complex 
cannot, which enables selective accumulation of 
a reactant into a confined space (65). A model of 
membraneless organelles acting as a filter also 
applies to the partitioning of RNA, which can 
tune the type of RNA chemistry that occurs in 
the organelle. RNAs can influence the 
compositional specificity of intracellular phases, 
with Langdon et al. showing that RNA structure 
and RNA-RNA interactions affect which RNAs 
partition into liquid droplets (66). There is other 
evidence that the length of RNA affects which 
RNAs become more concentrated in liquid 
droplets, with longer RNAs partitioning more 
effectively into the droplet phase (63). 
Meanwhile, Nott et al. have discovered that the 
microenvironment within phase-separated liquid 
droplets favors melting of double-stranded 
nucleic acids, stabilization of ssRNA secondary 

structure, and partitioning of RNA into droplets 
based on the stability of folding rather than the 
length (67,68). The discrepancy in the length 
dependence of RNA maybe because Nott et al. 
(67) used liquid droplets arising from RBPs for 
their study whereas Strulson et al. (63) used an 
aqueous two-phase system. Regardless, these 
findings present important steps toward 
understanding the molecular determinants of 
phase separation, some of which will be 
discussed later. The length dependence of RNA 
partitioning into liquid droplets is particularly 
interesting in light of data that local protein 
concentration and RNA length alter the binding 
mode and RNA-remodeling activity of the RNA 
helicases LAF-1 and DDX3X, both of which 
partition into membraneless organelles in vivo 
(69). Examining how tuning protein and RNA 
partitioning into membraneless organelles can 
modulate organelle activity will be an important 
avenue of further research. 
 
Cellular fitness 

One of the emergent properties of LLPS 
is that it is environmentally tunable and can thus 
play a cytoprotective role by sensing and 
responding to stress (29). Protein folding within 
the crowded intracellular environment is a 
challenge that is accentuated by cellular stresses 
that may trigger protein misfolding (35). The 
formation of reversible, phase-separated 
structures enables cells to store their proteins 
and RNAs temporarily in a manner that allows 
their rapid recovery after dissipation of the 
stress. In yeast, the prion protein, Sup35, acts as 
a pH sensor and forms liquid condensates that 
undergo a phase transition to gels in response to 
stress-induced drop in cytoplasmic pH (70). 
Upon stress, the formation of these Sup35 gels 
are protective and allow the yeast to better 
recover from the stress (70). In a similar manner, 
yeast polyA-binding protein (Pab1) acts as a 
sensor for pH and thermal stresses (71). In 
response to stress, Pab1 releases its bound 
mRNAs (which enables translation of key stress-
response transcripts) and forms reversible, 
phase-separated hydrogels (71). Complementary 
findings have been made with another yeast 
RBP, Pub1 (72). Indeed, in response to thermal 
stress, yeasts form assemblages of functional 
proteins held together by weak interactions (73). 
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These assemblages dissolve when the stress 
subsides, allowing for recovery of cellular 
proteins without widespread misfolding or 
degradation (73). Depending on the type of 
stress, assemblage dissolution can be 
spontaneous or may require protein 
disaggregases, such as Hsp104 (70,72,74). This 
controlled and reversible phase separation of 
mature proteins likely represents an adaptive 
strategy to stress, and contrasts with previous 
models where stress-induced aggregates were 
thought to be disordered accumulations of 
misfolded, denatured proteins (73). Results in 
yeast also extend to mammalian cells, where 
stress-induced stalling of translation leads to the 
condensation of protein and RNA into stress 
granules, which are dissolved after stress by 
Hsp110, Hsp70, and Hsp40 (8,75). Importantly, 
stress granules protect against cellular 
senescence by sequestering PAI-1, an 
established promoter of senescence (76). 
Overall, the ability of cells to form assemblages 
of proteins and nucleic acids in response to 
stress appears to be a conserved mechanism for 
cells to weather deleterious conditions. 
 
Molecular language of phase separation 

Although many if not all proteins can 
undergo phase transitions in vitro, not all 
proteins do so under physiological conditions. 
One of the common features of proteins that 
undergo phase separation in a biologically 
meaningful manner is the presence of 
multivalent binding domains, which we discuss 
below. 
 
Multivalency: the key principle 

The overarching property of proteins 
that phase separate is multivalency in interacting 
partners. Li et al. demonstrated this important 
principle by creating model proteins composed 
of tandem repeats of either a ligand or its 
binding partner (13). Combining repeats of an 
SH3 domain and its proline-rich motif (PRM) 
binding partner readily initiated phase separation 
of the proteins into liquid droplets (13). 
Increasing the interaction strength of the 
proteins by increasing the number of repeats of 
the two domains led to gelation of the liquid 
droplets (13). In this system, it is specific 

multivalent protein-protein interactions that 
drive phase separation. 
 
Intrinsically-disordered domains 

Multivalency can arise from protein-
protein interactions between ordered domains 
(13). However, intrinsically-disordered domains 
represent another method for achieving 
multivalency and often contain multiple short-
linear motifs (SLiMs) that mediate protein-
protein interactions (13). Our understanding of 
the molecular determinants of phase transitions 
increased with the discovery that biotinylated 
isoxasole (b-isox) reversibly precipitates many 
components of RNP granules (77,78). The 
presence of low complexity, PrLDs and RNA-
recognition motifs (RRMs) were common 
denominators for many of the proteins 
precipitated, and in the case of TIA-1, the 
presence of a PrLD was sufficient for 
precipitation (77). This observation highlighted 
the importance of disordered regions, especially 
PrLDs, as a determinant of phase separation. 

PrLDs represent a subset of low-
complexity domains that show similar amino-
acid composition to yeast prion domains (79-
85). These domains are enriched in polar, 
uncharged amino acids, such as asparagine (N), 
glutamine (Q), tyrosine (Y), and serine (S), as 
well as glycine (G) (79-85). Yeast prion 
domains enable certain yeast proteins such as 
Sup35, Ure2, and Rnq1 to form prions, 
infectious proteins that usually propagate via 
self-templating amyloid forms (34). Typically, 
amyloid fibrils are highly stable cross-b 
structures, which represent an extreme form of 
phase separation to solid phases that are difficult 
to reverse (35). Indeed, specialized protein 
disaggregases such as Hsp104 or Hsp110, 
Hsp70, and Hsp40 are typically required to 
reverse their assembly (86-89). The precise 
features of prion domains and PrLDs that enable 
them to form phase-separated liquids, gels, or 
prions are still being delineated (79,90-95). 

In humans, of the 240 genes that encode 
proteins with a PrLD, a remarkable 72 encoded 
RBPs (84). These include FUS, TDP-43, 
TAF15, EWSR1, hnRNPA1, hnRNPA2, and 
TIA-1, which are components of RNP granules 
that are heavily implicated in neurodegenerative 
disease (82), and are precipitated by the b-isox 
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compound (77). At high protein concentrations, 
the PrLD mediates the phase transition of FUS 
and hnRNPA1 into hydrogels in vitro that bind 
the PrLD of other RNP granule components. 
This observation led Kato et al. to posit that the 
ability of low-complexity domains to reversibly 
form labile amyloid-like states lies at the crux of 
RNP granule formation (77). Numerous studies 
have since corroborated the importance of 
intrinsically-disordered domains, especially of 
PrLDs, in the formation of phase-separated 
membraneless organelles (11,96-103). In some 
cases, deletion of the PrLD of key RBPs (e.g. 
TIA-1, FUS) completely abrogates the formation 
of RNP granules (102,104,105). The natural 
tendency of PrLDs to engage in promiscuous 
interactions and aggregation promotes phase 
separation. 

Evidence has also emerged that PrLDs 
may interact with another type of intrinsically 
disordered domain, termed RGG domains to 
drive phase separation (106-110). RGG domains 
are enriched for arginine and glycine residues 
(111), can bind RNA and phase separate 
(112,113), and are often found in RBPs with 
PrLDs (85). Indeed, for FUS and related RBPs, 
LLPS is elicited effectively via multivalent 
interactions between PrLD tyrosines and RGG 
arginines (106-108). These contacts are, in turn, 
modulated by negatively charged residues (107). 
Glycines confer liquidity, whereas glutamines 
and serines elicit gelation (107). Thus, a precise 
molecular grammar for phase separation by FUS 
and related RBPs begins to materialize (107). 
 
RNA- and DNA-binding domains 

RBPs present a special class of proteins 
that have biologically relevant phase behaviors. 
Many membraneless organelles are RNP 
granules that perform various RNA-processing 
activities, consist of RBPs and RNA, and 
assemble via LLPS of RBPs and RNA (8,114). 
The RBPs within these granules contain multiple 
multivalent domains including RRMs and 
intrinsically-disordered regions, which work 
together synergistically to modulate phase 
behavior (106-108,110,113,115). For many of 
these RBPs, the purified proteins alone undergo 
LLPS in vitro (11,101,116,117), and the 
intrinsically-disordered regions of these proteins 
are sufficient for droplet formation (99,118). 

However, phase separation by the intrinsically-
disordered region alone can lack the additional 
levels of regulation that arise from the presence 
additional multivalent domains like RRMs, 
RGG domains, and oligomerization domains 
(106,107,110,113,115,119). The ability to bind 
to multivalent scaffolds, such as DNA and RNA, 
through RRMs, zinc fingers, or other nucleic-
acid binding domains present another common 
characteristic of proteins that undergo LLPS 
(29). The role of RNA as a scaffold for phase 
separation is evident from studies on several 
RBPs, including FUS (103) and Whi3, a fungal 
RBP that regulates nuclear division and cell 
polarity (120). In vitro, RNAs that bind Whi3 
promote Whi3 phase separation (120) and 
encipher RNP granule identity (66). Mutations 
in the Whi3 RRM that abrogate RNA binding 
also prevent RNA-stimulated phase transitions 
of Whi3, suggesting that the RRM enables 
multiple Whi3 proteins to bind to the same RNA 
(120). 
 
Oligomerization domains 

Protein valency increases with the 
presence of oligomerization domains. For 
example, TDP-43, a highly expressed nuclear 
RBP, contains an N-terminal domain that forms 
oligomers (117,121-124). Recently, Wang et al. 
established that polymerization of the N-
terminal domain promotes LLPS of TDP-43 in 
vitro and that a single phosphomimetic mutant in 
the N-terminal domain can reduce the propensity 
of TDP-43 to phase separate (117). The ability 
of oligomerization domains to nucleate a locally 
high concentration of a protein to promote phase 
separation has been used by Shin et al. to form 
optogenetically controlled liquid droplets in vivo 
(125). Here, the intrinsically-disordered regions 
of several RBPs are fused to Cry2, a protein that 
oligomerizes in response to blue light (125). 
Oligomerization of Cry2 elicited by blue light 
nucleates intracellular droplets of the fusion 
proteins (125). Thus, environmentally-
responsive oligomerization domains can 
promote phase separation in response to specific 
environmental cues. 
 
Weak interactions maintain membraneless 
organelles in phase 
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The essential physics of polymer phase 
separation are well established, and help inform 
biological phase separation (19). Concentrating 
molecules into a confined space can carry an 
energetic cost. Numerous weak interactions 
work together to counteract the entropic cost for 
phase separation as well the interfacial free 
energy cost to create a phase boundary. The 
molecular interactions found to be important in 
phase separation include p-p stacking, cation-p 
interactions, charge-charge interactions, and 
transient cross-b contacts (Fig. 2). 
 
p-p interactions 

Aromatic residues tyrosine (Y), 
tryptophan (W) and phenylalanine (F) as well as 
residues arginine (R), glutamine (Q), asparagine 
(N), aspartic acid (D), and glutamic acid (E) 
contain delocalized p electrons in their side 
chains that can engage in p-p stacking (126). 
Work to understand the sequence features of 
phase-separating proteins has uncovered p-p 
interactions as critical (126). Using a 
comprehensive mutagenesis approach, for 
example, Pak et al. uncovered that phase 
separation of Nephrin intracellular domain 
depends strongly on the presence of tyrosine 
residues, as missense mutations to those residues 
reduced the ability of the protein to form liquid 
droplets in cells (127). Similar observations have 
been made with FUS and hnRNPA2 PrLDs in 
vitro (128,129). The gel-like state of the nuclear-
pore complex results from p-p interactions 
between phenylalanine residues in the FG 
repeats of nucleoporins (52,53). Remarkably, 
Vernon et al. have established that long-range p-
p contact propensity alone can identify the 
majority of known phase-separating proteins 
(126), highlighting the critical role for p-p 
interactions in LLPS. 
 
Cation-p interactions 

Cation-p interactions occur between 
positively-charged amino acids lysine and 
arginine and electron-rich aromatic groups. 
These interactions have also gained importance 
as drivers of LLPS (106-108,110,113). For the 
RNA-helicase, Ddx4, cation-p interactions 
between FG and RG regions of the protein are 
drivers of protein phase separation in vitro and 

in vivo (130). As a caveat, interaction between F 
and R could also include p-p interactions, which 
likely contributed to the phase separation of 
Ddx4 as well. Surprisingly, short-range cation-p 
interactions are strong enough to overcome 
long-range charge-charge repulsion and cause 
two positively charged polymers to coacervate 
in vitro (131). It is also interesting to note that an 
emergent property of multiple cation-p and p-p 
interactions that drive LLPS is the ability to melt 
nucleic-acid duplexes by disrupting the p-p 
interactions that maintain them (67). 
 
Charge-charge neutralization 

Charge-charge interactions have also 
gained attention as important drivers of phase 
separation. Oppositely charged polymers when 
brought together can coacervate into liquid 
droplets through charge neutralization, as has 
been shown for mixtures of RNA and cationic 
peptides (4,132). While this may be a simplified 
artificial system, the phenomenon of long-range, 
charge-charge interactions driving phase 
separation has also been observed in proteins in 
vitro and in vivo (127,130). An emerging theme 
is that it is not the presence of charged residues 
per se, but rather the arrangement of charged 
resides into stretches that is important for phase 
separation (127,130,133). Working in this 
manner, clusters of charged residues act akin to 
a multivalent domain to promote phase 
separation. 
 
LARKs and transient cross-b contacts 

Several RBPs that undergo LLPS 
contain PrLDs. In the RBP FUS, for example, a 
portion of the PrLD forms fibrils in which 
stretches of amino acids assemble into 
intermolecular cross-b sheets as typically found 
in amyloid fibrils (35,95). However, recent 
crystallographic studies of fibrils formed by 
short segments of the PrLDs of RBPs that 
undergo LLPS have uncovered a structural 
difference compared to classic amyloid fibrils 
(134-136). While amyloid fibrils tend to have 
cross-b sheets with interdigitated amino acids 
that form steric zippers, fibrils formed by short 
segments of PrLDs of RBPs that undergo LLPS 
have kinked cross-b sheets termed low-
complexity aromatic-rich kinked segments 
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(LARKS) (134). These kinked b-sheets are less 
thermodynamically stable than the b-sheets of 
amyloid fibrils, and proteins with PrLDs 
enriched for LARKS are found in membraneless 
organelles that assemble via LLPS (134). 
Together these findings suggest that weak, 
transient cross-b contacts might contribute to 
LLPS whereas more stable cross-b contacts 
contribute to pathological amyloidogenesis. 
 
Modulators of phase separation 

One of the fundamental principles of a 
living organism is the ability to adapt to change. 
Cells must constantly tune their biochemistry in 
response to environmental cues, and the 
membraneless organelles within a cell must 
similarly be responsive to intra- and extra-
cellular signals. To regulate phase separation, 
cells rely on several processes including post-
translational modifications and seeding 
mechanisms. 
 
Post-translational modification (PTMs) 

PTMs provide cells with a powerful 
means to facilitate or antagonize LLPS in 
response to environmental signals (137). Indeed, 
SLiMs often mediate protein-protein interactions 
that drive phase separation and are frequently 
the target of regulation by PTMs (13,138). 
PTMs can promote LLPS, for example, by 
increasing the effective valency of a protein. In 
the nucleus, there are membraneless organelles 
called PML bodies for which the PML protein 
acts as a scaffold (Fig. 1B). SUMOylation of 
PML is necessary for proper formation of PML 
bodies because SUMO acts as a binding ligand 
that recruits other proteins, such as Daxx, into 
the membraneless organelle (139-141). 
Similarly, tyrosine phosphorylation of the 
protein nephrin promotes phase separation of 
nephrin with the protein NCK because the 
phosphotyrosine acts as a docking site for NCK 
(13). Phosphorlyation of serines in the FUS 
PrLD fluidizes FUS droplets (115,142). On the 
other hand, phosphorylation can promote the 
disruption of phases as with the dissolution of 
Rim4 assemblies by Ime2 (60) and the 
dissolution of various nuclear membraneless 
organelles during mitosis by Dyrk3 (143). 
Likewise, arginine methylation of the RBPs 

Ddx4, hnRNPA2, and FUS can antagonize 
phase separation (99,106,113,130). This list of 
PTMs involved in regulation of phase transitions 
is by no means exhaustive, but rather represents 
a small subset of the numerous ways that PTMs 
can modulate LLPS. 
 
Seeding mechanisms 

Phase transitions are concentration-
dependent, switch-like phenomena that occur 
above a certain local critical concentration (29). 
Cells can promote phase separation through a 
nucleator that seeds a locally higher 
concentration of certain biomolecules to reach 
the necessary critical concentration. We 
highlight three nucleators below: 
 
RNA 

Although RBPs receive a lot of attention 
in phase separation, RNAs also play key roles in 
the formation of various membraneless 
organelles (28,66,105). The function of several 
membraneless organelles is intimately centered 
around RNA, such as mRNA decay in P-bodies, 
mRNA storage in stress granules, mRNA 
splicing in nuclear speckles, and rRNA synthesis 
in nucleoli (29). Indeed, RNA acts as a potent, 
biologically important nucleator of intracellular 
phase separation. As examples, RNA induces 
the phase separation of MEG-3, a key scaffold 
protein in C. elegans P granules (144), stalling 
of translation during a stress response exposes 
free mRNAs that act as nucleators for stress 
granules (28,145), and Men ε/β noncoding (nc) 
RNAs seed the formation of nuclear 
paraspeckles (146,147). It is noteworthy that 
there are many ncRNAs for which biological 
functions are not well known (148). It is possible 
that these RNAs regulate phase transition events 
in cells like the Men ε/β ncRNA. 
 
Poly(ADP ribose) 

Besides RNA, the cell also utilizes 
RNA-like molecules to seed LLPS. One such 
molecule is Poly(ADP ribose) or PAR, a 
polymer of ADP-ribose monomers that is 
involved in the formation of several stress-
triggered membraneless organelles (149). For 
example, PAR recruits transcription factors to 
the heat-shock protein locus in Drosophila 
polytene cells in response to heat shock and 
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recruits DNA-damage repair factors to sites of 
DNA damage (40,101,150,151). PAR is both a 
PTM and an RNA-like scaffold that assembles 
proteins, including FUS and TDP-43, into 
membraneless organelles via LLPS 
(101,150,152). PAR is also found in stress 
granules (153). Thus, PAR has a wide-reaching 
role in stress-triggered assembly of 
membraneless organelles. 
 
Polyphosphates 

In light of the importance of charge-
charge interactions and poly-anion seeds like 
RNA in the molecular language of phase 
separation, it seems plausible that other 
polyanions, like polyphosphates for instance, 
may also act as seeds for phase separation. 
Cremers et al. have previously elucidated a role 
for polyphosphates in nucleating amyloids 
(154), while Racki et al. have uncovered that 
polyphosphate granules assemble and coalesce 
during starvation-induced stress response in 
bacteria (155). The uncanny similarity between 
RNP-granule biogenesis via LLPS and 
polyphosphate granule assembly merits further 
exploration. 
 
Proline cis-trans isomerization 

A key feature of several phase-
separating RBPs is the presence of a PrLD (84), 
which can often contain sporadic proline 
residues. Given that proline introduces kinks as 
a result of its constrained side-chain geometry 
and given that PrLDs can aggregate into amyloid 
fibrils, prolines may serve as a natural fluidizer 
in PrLDs and other low-complexity domains to 
prevent aberrant aggregation. Proline 
isomerization may then serve a possible role in 
regulating phase transitions mediated by low-
complexity domains. Indeed, peptidyl-prolyl cis-
trans isomerases (PPIases) colocalize with stress 
granules, bind hydrogels formed from the PrLDs 
of RBPs, and increase the solvent accessibility 
of certain residues in hnRNPA2 as it assembles 
into fibrils (129). Importantly, PPIAs can also 
function as protein disaggregases with activity 
against amyloid fibrils (87,156). Thus, proline 
cis-trans isomerization may be another 
mechanism by which cells modulate the phase 
behavior of proteins. 
 

Aberrant phase transitions in 
neurodegenerative disease 

A hallmark of several neurodegenerative 
diseases is aberrant protein aggregation: a-
synuclein aggregates in Parkinson’s Disease, 
amyloid-b and tau in in Alzheimer’s disease, 
and TDP-43 and the FET family of proteins in 
amyotrophic later sclerosis (ALS) and 
frontotemporal dementia (FTD) (35). For RBPs 
implicated in ALS and FTD, LLPS provides a 
mechanistic link between normal cellular 
function and disease phenotypes. 

FUS, TDP-43, hnRNPA1, and TIA-1 
are among the RBPs that are associated with 
ALS and FTD, which coalesce into 
membraneless organelles called stress granules 
(83). Observations of purified FUS, hnRNPA1, 
and TIA-1 uncovered that these proteins form 
dynamic liquid droplets in vitro that age over 
time to become more static, fibrillar aggregates 
(11,101,157). The conversion from a liquid state 
to a more aggregated state has been termed an 
aberrant phase transition (101). The final 
aggregated form of the protein bears 
resemblance to the protein aggregates found in 
patients with ALS and FTD. Fibrillization can 
occur within the condensed liquid state, 
suggesting that concentrating these RBPs in 
membraneless organelles via LLPS as part of 
normal cellular biology may have the 
inadvertent effect of triggering protein 
aggregation over time (11,83,101). Indeed, data 
that aggregates of these RBPs are 
immunoreactive for other components of stress 
granules has provided further evidence that 
stress granules may be the sites of disease 
biogenesis (83,158). However, RBPs with 
PrLDs that are connected to neurodegenerative 
disease like FUS, TDP-43, TAF15, EWSR1, and 
hnRNPA1 are intrinsically aggregation prone 
(81,109,159-161). Thus, pathological 
aggregation could also be nucleated outside of 
stress granules. Pathological aggregates could 
then subsequently sequester specific stress-
granule proteins. 

Additional evidence connecting aberrant 
phase transitions to disease comes from analysis 
of mutations in these RBPs that are associated 
with hereditary forms of neurodegenerative 
disease. Disease-associated mutations often 
exacerbate protein aggregation and alter the 
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phase behavior of the protein (11,101). For 
example, ALS and multisystem proteinopathy 
(MSP) associated mutations in the PrLD of 
hnRNPA1 and hnRNPA2 increase the 
amyloidogenicity of these proteins and 
accelerate fibrillization (81). Additionally, ALS-
linked mutations in TDP-43 also promote 
aggregation and alter TDP-43 phase behavior 
(118,152,159). The PrLDs of these proteins 
normally form weak, transient interactions with 
each other in the liquid droplets. Some disease-
associated mutations strengthen the otherwise 
transient interactions in the PrLD, leading to less 
dynamic droplets and RNP granules 
(11,101,157,162). Likewise, the arginine-rich, 
dipeptide-repeat proteins, poly-PR and poly-GR, 
produced by repeat-associated non-ATG 
translation of the ALS/FTD-causing G4C2 repeat 
expansion of C9orf72 also accelerate aberrant 
phase transitions of RBPs with PrLDs and 
perturb the phases of several membraneless 
organelles (132,163-165). The protein 
aggregates seen in disease likely represents an 
end stage phenotype after aberrant phase 
separation has overwhelmed the cellular 
machinery that ordinarily reverses these altered 
phases. 
 
Counteracting neurodegenerative diseases 
with knowledge of phase separation 

Neurodegenerative disease like ALS and 
FTD lack effective therapies. Recent advances in 
our understanding of how altered phase 
transitions contribute to these disorders reveal 
several potential avenues for therapeutics. These 
include: 1) enhancing the machinery already 
present inside cells to maintain RNP-granule 
dynamics; and 2) targeting the factors that 
recruit RBPs to RNP granules. 

The cell has various molecular 
chaperones that remodel misfolded proteins and 
contribute to proper maintenance of RNP-
granule dynamics (166). Nuclear-import 
receptors also act as chaperones and dissolvases 
that reverse LLPS and aberrant phase separation 
of their RBP cargo (106,110,113,119). Small-
molecule enhancers of these chaperones or de 
novo designed chaperone proteins with enhanced 
disaggregase activity thus present promising 
approaches for targeting neurodegenerative 
diseases (86,87,167-170). 

Targeting the specific factors that recruit 
neurodegenerative disease-associated RBPs to 
RNP granules may also therapeutically tune the 
accumulation of these RBPs inside stress 
granules. For example, knockdown of Ataxin 2 
reduces accumulation of TDP-43 in stress 
granules and is therapeutic in reducing TDP-43 
toxicity in several ALS models (171,172). 
Additionally, molecular seeds like PAR that 
nucleate RNP granules can also be potential 
targets for therapies using anti-sense 
oligonucleotides or small-molecule inhibitors of 
specific PAR polymerases (101,152), or 
methods to upregulate specific PAR 
glycohydrolases (173). Finally, RNA acts both 
as a molecular seed in the cell as well as a 
safeguard against aberrant phase separation in 
the nucleus where RNA concentration is higher 
(174). Thus, expression or delivery of certain 
RNAs that are particularly effective at reducing 
aberrant protein phase separation may also be 
therapeutic. Overall, we anticipate that advances 
in our understanding the molecular language of 
phase separation will ultimately enhance efforts 
to combat neurodegenerative diseases 
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Figure 1. LLPS phase separation in vitro and in vivo. (A) In a mixture of two types of molecules, 
LLPS leads to the formation of two phases akin to droplets of oil appearing from a mixture of oil and 
water. Proteins can undergo a similar phase separation. In this case, the RBP FUS (olive circles) 
undergoes LLPS upon cleavage of the MBP tag (cyan circles) and forms liquid droplets that are enriched 
in FUS compared to the surrounding medium. (B) LLPS underpins the biogenesis of a wide array of 
membraneless organelles within cells. Depicted here is a non-exhaustive list of these organelles. 
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Figure 2. Critical interactions that drive LLPS. The interactions important in LLPS include cation-π, 
π-π, electrostatic, and transient cross-β contacts. Proteins that undergo LLPS are enriched for low-
complexity disordered regions and multivalent domains. Polymers of ions, such as RNA, may 
additionally act as scaffolds or molecular seeds for LLPS. The image for transient cross-β contacts and 
LARKS comes from Hughes et al. (99). 
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